5/5 (6 avis)
Vue 26 293 fois - Téléchargée 2 507 fois
#include <conio.h> #include <stdio.h> int posDames[8]={0}; // index du tableau=y, valeur=x int solution=0; int abs(int n) { return n<0 ? -n : n; } void recursive(int nDames) // nDames=ligne en cours et dames restantes { if(nDames==8) { for(int i=0; i<8; ++i) { for(int j=0; j<8; ++j) if(j==posDames[i]) printf("1 "); else printf("0 "); printf("\n"); } printf("\n\n"); ++solution; } for(int i=0; i<8; ++i) { for(int j=0; j<nDames; ++j) if(posDames[j]==i || ( abs(posDames[j]-i) == abs(j-nDames))) // Si il y a déjà une dame dans la colonne OU // Si il faut se "déplacer" d'autant (en valeur absolue) de cases en x et y pour aller d'une dame // à une autre c'est à dire que les pieces peuvent se prendre en diagonale goto next; posDames[nDames]=i; recursive (nDames+1); // On parcourt la ligne suivante dans l'echequier next: continue; } return; } int main(int argc, char *argv[]) { recursive(0); printf("\nNombre de solutions: %d\n",solution); _getch(); return 0; }
26 déc. 2006 à 16:19
pour la taille de l'exec, l'idée est d'enlever les symboles de débug lors de la compilation, tu utilises quel IDE ?
Clock est peu précis, mais bon vu l'utilisation que tu en fais on va dire que c'est pas bein grave :)
Ne pas utiliser system c'est pas portable
Tu devrais expliquer un peu plus le if(posDames[j]==i || ( abs(posDames[j]-i) == abs(j-nDames))) j'ai mis un peu de temps à comprendre ^^
7/10, je pense :) (surtout pour une 1ère source )
++
26 déc. 2006 à 21:20
J'utilise dev-c++, et aparament j'ai mis toutes les options susceptibles de diminuer la taille...
J'ai essayé de viré l'en tête iostream pour mettre stdio.h et la comme par magie mon exe passe de 260 ko à... 5,5ko!
C'est pas très normal ça, si? ^^
Sinon pour le system tu as raison faut vraiment que je perde l'habitude de l'utiliser lol
27 févr. 2008 à 16:16
Il existe un algorithme simple retournant une solution simple pour n dames si n 1 ou n 4:
Diviser n par 12. Se rappeler du reste (c'est 8 pour le problème des huit dames).
Écrire dans l'ordre la liste des nombres pairs de 2 à n.
Si le reste est 3 ou 9, mettre 2 à la fin de la liste.
Écrire dans l'ordre les nombres impairs de 1 à n, mais, si le reste est 8, permuter les deux à deux (ie 3, 1, 7, 5, 11, 9, …).
Si le reste est 2, permuter les places de 1 et 3, puis mettre 5 à la fin de la liste.
Si le reste est 3 ou 9, mettre 1 et 3 à la fin de la liste.
Placer la reine de la première colonne dans la ligne avec le premier nombre de la liste, placer la reine de la seconde colonne dans la ligne avec le deuxième nombre de la liste, etc.
car cet algorithme est trop simple et suppose que l'on connaisse la solution avant d'écrire l'algorithme
De plus il ne fonctionne pas si l'on change légèrement les règles échiquéenne ...
8 avril 2008 à 22:07
if(posDames[j]==i || ( abs(posDames[j]-i) == abs(j-nDames)))
23 avril 2011 à 18:31
Vous n'êtes pas encore membre ?
inscrivez-vous, c'est gratuit et ça prend moins d'une minute !
Les membres obtiennent plus de réponses que les utilisateurs anonymes.
Le fait d'être membre vous permet d'avoir un suivi détaillé de vos demandes et codes sources.
Le fait d'être membre vous permet d'avoir des options supplémentaires.